
Stephen Checkoway

Programming Abstractions
Lecture 6: Accumulator-passing style

Loops and efficiency

Compare a C (or Java) function to

compute the factorial

int fact(int n) {  
 int product = 1;  
 while (n > 0) {  
 product *= n;  
 n -= 1;  
 }  
 return product;  
}

to our recursive Racket

implementation

(define (fact n)  
 (if (<= n 1)  
 1  
 (* n  
 (fact (- n 1)))))

How do these differ?

In C, just one function call

In Racket, (fact 10) makes 10 calls to fact (the original one and then nine

more)

Loops and efficiency

To be efficient, Racket internally converts all tail-recursions into loops

A function is tail-recursive if the last thing it does is to recurse and return the

result of that recursion

Example: 

(define (foo x y)  
 (if (zero? x)  
 y  
 (foo (sub1 x) (+ x y))))

When the condition is satisfied, y is returned, otherwise foo is called again with

some different parameters and that value is returned

Our factorial is not tail recursive

(define (fact n)  
 (if (<= n 1)  
 1  
 (* n (fact (- n 1)))))

The last thing fact does is perform a multiplication; the recursion happens

before the multiplication

Our factorial is not tail recursive

Given (fact 4), we end up with  

(fact 4) => (* 4 (fact 3))  
 => (* 4 (* 3 (fact 2)))  
 => (* 4 (* 3 (* 2 (fact 1))))  
 => (* 4 (* 3 (* 2 1)))  
 => (* 4 (* 3 2))  
 => (* 4 6)  
 => 24

We can see this in DrRacket

Is this procedure tail recursive?  

(define (length lst)

 (cond [(empty? lst) 0]

 [else (+ 1 (length (rest lst)))]))

A. Yes

B. No

C. It depends on how long the list is

7

Solution: Use an accumulator
(Accumulator-passing style isn't the real name of this technique)

(define (fact-a n acc)  
 (if (<= n 1)  
 acc ; return the accumulator  
 (fact-a (sub1 n) (* n acc)))) 

(define (fact2 n)  
 (fact-a n 1))

Four things to notice

‣ We defined a recursive helper function that takes an additional param

‣ We provide an initial value for the accumulator in fact2's call to fact-a

‣ The base case returns the accumulator

‣ fact-a is tail-recursive

fact2 is tail-recursive

(fact2 4) => (fact-a 4 1)  
 => (fact-a 3 4)  
 => (fact-a 2 12)  
 => (fact-a 1 24)  
 => 24

So how does this become a loop?

Use variables for the parameters and update them each time through the loop  

(define (fact-a n acc)  
 (if (<= n 1)  
 acc ; return the accumulator  
 (fact-a (sub1 n) (* n acc))))

becomes (pseudocode)  

def fact-a(n, acc):  
 loop:  
 if n <= 1:  
 return acc  
 n, acc = n - 1, n * acc

Is this procedure tail recursive?  

; Return the nth element of lst

(define (list-ref lst n)

 (cond [(empty? lst) (error 'list-ref "List too short")]

 [(zero? n) (first lst)]

 [else (list-ref (rest lst) (sub1 n))]))

A. Yes

B. No

C. I have no idea!

11

Two strategies for tail recursive procedures

Accumulator-passing style with one or more accumulator parameters

‣ Usually, the procedure we really want doesn't have these parameters

‣ Use helper functions

Continuation-passing style

‣ This uses something called continuations which we'll talk about later in the

semester

Let's write some tail-recursion procedures

(sum lst) — Add all the numbers in the lst

(maximum lst) — Find the maximum value in a nonempty list

(reverse lst) — Reverses the list lst

(remove* x lst) — Remove all instances of x from lst

‣ If we use letrec to define remove*-a, then we don't need to pass x to

remove*-a

(remove x lst) — Remove the first instance of x from lst

‣ We can use letrec here as well

